Usually, with cache upsizing, we expect to see system performance improvement. However, this is not always the case. There could be several reasons:

  1. The “compulsory”, instead of “capacity”, prevents the performance improvement from cache upsizing. This means the temporal locality and spatial locality offered by cache are not utilized. For example, the program keeps to access new data and there is no data reuse, which can happen in streaming applications; if context switch happens often, then cache flush may happen often and more “compulsory” will occur

  2. In cache-coherent system, there may be 2 caches competing for one copy of data, i.e., “coherence” miss. This can happen when 2 CPUs want to gain the lock or semaphore simultaneously. Increasing cache size will not help performance in this case
  3. Assuming the cache upsizing is achieved by cache line upsizing, then the loading time of a cache line will increase. This in turn increases the cache miss penalty and average memory access time
  4. Assuming the cache upsizing is achieved by increasing associativity, then the hit latency as well as average memory access time may increase. This is because physical implementation of high associativity cache can be hard

The choice of replacement policies has an impact on cache performance, which we will cover in the next post.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.